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Abstract

This paper provides guidance on how to form groups to make optimal decisions. Specifically,
it covers how group decisions differ from individual decisions, and under what conditions it is
worthwhile to add a new member to a voting group. A voting group in this context is any
collection of entities (people or software) contributing equally to making a decision.

1 Introduction

Many are familiar with the concept of “the wisdom of the crowd”, that is, the idea that a group
of average individuals can outperform a single expert on a variety of tasks. Unfortunately, the
literature is quite light on the mathematical explanation for this effect, as well as on explaining the
required conditions for the effect to be most potent. This paper expands on the proof by Bishop
[1] and adds commentary to make it suitable for a non-mathematical audience.

2 Error of an individual vs. error of a group

Each individual in a group, hereafter indexed m, will have some model of the world. Their (their
model’s) opinion (prediction, in machine learning literature) on a particular point of inquiry x
(train/test example, in machine learning literature) can be written as

ym(x) = h(x) + εm(x)

Where ym(x) is member m’s learned model of the world, h(x) is the world as it is (in other words,
true reality), and εm(x) is some error. x is some specific point to evaluate. For example, x could
be “what will the price of oil be in California tomorrow?”, ym(x) is model m’s prediction for the
price, h(x) is what the price ended up being, and εm(x) is the difference between the predicted
value and actual value.

In English, this equation is saying that “a model of the world = reality + some error”. This
can be re-written as

εm(x) = ym(x)− h(x)

Which in words is saying “your error is the difference between your model of the world and reality”.
We can talk about the average (squared) error on all possible topics x

Ex[(ym(x)− h(x))2] = Ex[εm(x)2]

In words, this is the expected square of the error the model of the world is making over all possible
inquiries.
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Now, imagine that instead of one model of the world, you have M models. ym(x) ∈ {y1(x), y2(x), ..., yM (x)}
What is the average error across all the models taken individually?

EAV G =
1

M

M∑
m=1

Ex[εm(x)2]

If we combine all the models into one instead of evaluating the error of each model individually,
we can compare the average error of the individual models with the error of the combined model.
We will call the combined model a “committee”. The committee’s decision is the average of each
member’s vote

ycommittee(x) =
1

M

M∑
m=1

ym(x)

And we can solve for the error of the committee:

Ecommittee = Ex[{( 1

M

M∑
m=1

ym(x))− h(x)}2]

= Ex[{ 1

M
(

M∑
m=1

ym(x)−Mh(x))}2]

= Ex[{ 1

M
(

M∑
m=1

ym(x)−
M∑

m=1

h(x))}2]

= Ex[{ 1

M

M∑
m=1

(ym(x)− h(x))}2]

= Ex[{ 1

M

M∑
m=1

εm(x)}2]

Notice that the real-world never changes (h(x) is the same for all). If the errors between each
model m are uncorrelated and each has a mean of zero, something interesting happens. Under
these assumptions
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Ecommittee = Ex[{ 1

M

M∑
m=1

εm(x)}2] (1)

=
1

M2
Ex[

M∑
m=1

εm(x)2 +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2εi(x)εj(x)] (2)

=
1

M2
(Ex[

M∑
m=1

εm(x)2] + Ex[
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2εi(x)εj(x)]) (Expectation of sums is the sum of expectations)

(3)

=
1

M2
(

M∑
m=1

Ex[εm(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)]) (Expectation of sums is the sum of expectations)

(4)

=
1

M2

M∑
m=1

Ex[εm(x)2] (See below) (5)

=
1

M
EAV G (6)

Step 5 comes from the two assumptions listed above. Pull out the constant 2 since E[cX] = cE[X]
when c is a constant. Then by the definition of uncorrelated, E[XY ] = E[X]E[Y ], and by the as-
sumption of the mean of each model’s errors being zero E[X] = 0. Therefore the

∑
2Ex[εi(x)εj(x)]

term disappears since
∑

2Ex[εi(x)εj(x)] =
∑

2Ex[εi(x)]Ex[εj(x)] =
∑

2× 0× 0 = 0.

This tells us that we can endlessly reduce our error simply by adding more members to our com-
mittee if we choose our new members carefully. So with M = 2 we cut our average error in half.
With M = 100, the average error of the committee (which simply averages each member’s guess)
across all possible topics x will be just 1% of the average of each of their errors taken individually.

The reason this result is interesting, and not obvious, is because it places absolutely no requirement
on each model ym(x)’s quality. That is to say, even if each model is very weak on its own, as long as
it is uncorrelated with the other models, and makes errors equally in both directions, the average
of the weak models is very strong compared to what they were individually.

3 Criteria for adding new members

Obviously, most people would reject the assumptions above as being impractical, and it is true that
it is difficult to make models that are truly uncorrelated and have mean errors centered at zero.

The qualitative defense of these assumptions is that averaging different models is used widely
in practice by data scientists and by societies across the world with generally good results.

The quantitative defense is that because of the smoothness of the limits of the covariance and
expectation functions, we don’t actually have to be completely uncorrelated, or completely mean
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zero, to reap the benefits. Cov[X,Y ] = E[XY ] − E[X]E[Y ], so E[XY ] = Cov[X,Y ] + E[X]E[Y ].
Therefore,

lim
Cov[X,Y ]→0

E[XY ] = E[X]E[Y ]

and
lim

E[X]→0 or E[Y ]→0
E[X]E[Y ] = 0

This shows that every tiny step we take towards reducing the covariance of our models, and every
step we take to center the model errors at zero, is helpful. In other words, the function is convex,
so there will never be a case where reducing the correlation and getting mean error closer to zero
hurts us. That being proven, we now have a precise way to judge whether adding a new member
to our committee will bring a reduction in error.

What makes a new member worth adding to the committee? Obviously, we want the error after
adding the member to be better than the current committee error:

Enew < Ecurrent

Plugging in what we solved for above for Enew and Ecurrent gives us:

1

(M + 1)2
(
M+1∑
m=1

Ex[εm(x)2] +
∑

∀i∈(1..M+1),
∀j∈(1..M+1)

i<j

2Ex[εi(x)εj(x)]) <
1

M2
(

M∑
m=1

Ex[εm(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)])

Now extract the terms containing εm+1 to make it clear exactly what changed.

1

(M + 1)2
(

M∑
m=1

Ex[εm(x)2] + Ex[εm+1(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)] +
M∑

m=1

2Ex[εi(x)εm+1(x)])

<
1

M2
(

M∑
m=1

Ex[εm(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)])

Multiply both sides by M2

M2

(M + 1)2
(

M∑
m=1

Ex[εm(x)2] + Ex[εm+1(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)] +
M∑

m=1

2Ex[εi(x)εm+1(x)])

<

M∑
m=1

Ex[εm(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)]

Now let’s use this inequality to examine two scenarios: M = 1 → 2 and M = ∞ → ∞ + 1. For
M = 1→ 2 we have

1

4
(Ex[ε1(x)2] + Ex[ε2(x)2] + 2Ex[ε1(x)ε2(x)]) < Ex[ε1(x)2]

1

4
Ex[ε2(x)2] +

1

2
Ex[ε1(x)ε2(x)] <

3

4
Ex[ε1(x)2]
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This is the inequality that must hold to see if it is worth adding model 2 to our committee. This
is saying that the sum 1

4 of model 2’s squared error plus half of the expectation of ε1(x)ε2(x) must
be less than 3

4 of model 1’s squared error by itself. The pertinent thing here is that model 2
doesn’t have to have better error than model 1 to help, nor do model 1 and 2 need to be perfectly
uncorrelated with mean zero. Imagine model 2 has the same squared error as model 1. Then we
have

1

2
Ex[ε1(x)ε2(x)] <

1

2
Ex[ε1(x)2]

Ex[ε1(x)ε2(x)] < Ex[ε1(x)2] (Multiply by 2)

Cov[ε1(x), ε2(x)] + Ex[ε1(x)]Ex[ε2(x)] < Ex[ε1(x)2]

The last step comes from the definition of covariance: Cov[X,Y ] = E[XY ]−E[X]E[Y ], so E[XY ] =
Cov[X,Y ] + E[X]E[Y ].

For the case M =∞→∞+ 1 we have limM→∞
M2

(M+1)2
= 1 so

M∑
m=1

Ex[εm(x)2] + Ex[εm+1(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)] +

M∑
m=1

2Ex[εi(x)εm+1(x)]

<
M∑

m=1

Ex[εm(x)2] +
∑

∀i∈(1..M),
∀j∈(1..M)

i<j

2Ex[εi(x)εj(x)]

The original error terms cancel out giving us the following criterion for adding new members:

Ex[εm+1(x)2] +
M∑

m=1

2Ex[εi(x)εm+1(x)] < 0

Since error will always be ≥ 0, this condition is impossible to meet. In practice we will never have
an infinite amount of models, but it shows that as M →∞, it becomes harder and harder to find
new models that will result in any improvements, and the improvements they bring will be smaller
and smaller, since they are being averaged out among so many other models.

4 Conclusion

The math supports the ideal that diversity of opinion is valuable when making decisions. Liberties,
such as freedom of thought, are thus especially important in democratic societies, as a means to
reduce the correlation among voters.

The criteria does, however, go against the intuitive idea that preserving or improving the in-
telligence of the average voter is the easiest way to improve the performance of a voting group.
Reducing individual error, say, through better education, may not be as valuable as reducing the
correlation, and when education is deployed on a large-scale (i.e. as part of the society-wide cur-
riculum) it should be focused on teaching things of which there is little room for doubt, or on
teaching balanced, open-minded ways of thinking, in order to encourage people’s errors to aver-
age out towards the center. Improper education is especially dangerous as it increases correlation
among the members in a group without a concomitant decrease in error.
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The results demonstrated above also help inform the choice of government (in terms of how
big the electorate should be). Monarchy is hard to justify as it should not be difficult to improve
decision-making by finding a co-ruler who is uncorrelated with the first, even if they are slightly less
intelligent. However, there are clear diminishing returns as the size of the electorate is increased.
Keeping votes uncorrelated depends not just on the amount of liberty in a society but on the depth
and breadth of the problem space, as it is impractical to have many uncorrelated models in a narrow
domain.

If only a few types of topics need to be voted on, a diverse group of ten to one hundred people
should be sufficient. If the range of issues to be decided spans the entirety of human knowledge, up
to ten thousand could perhaps be justified, but after that the benefits of enlarging the electorate
are more philosophical (appealing to the fairness, justice, and ethicality of universal suffrage) than
mathematical (actually resulting in better decisions).
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Appendices

A Squared error vs. error

What is the difference between Ex[εm(x)2] and Ex[εm(x)]? Isn’t it cheating to assume Ex[εm(x)] ≈ 0
since that looks like we aren’t making any errors?

Ex[εm(x)] ≈ 0 is not actually saying we aren’t making errors. Consider trying to predict the
stock price for a stock tomorrow and the next day. If tomorrow you were off by +$100 and the
next day you were off by -$100, then your average error was zero, but you obviously made mistakes.
In this example, Ex[εm(x)] = (100)+(−100)

2 = 0. Ex[εm(x)2] better captures the fact that we made

mistakes. In this case, Ex[εm(x)2] = (100)2+(−100)2
2 = 10000.

So when we made the assumption that Ex[εm(x)] ≈ 0, we are not making any statement on the
absolute quality of the models, but rather are saying the model is generally making mistakes of
equal magnitude in both directions.

One last question is why not use Ex[|εm(x)|] instead of Ex[εm(x)2], since it also deals with
the issue of positive mistakes canceling out negative mistakes? Ex[|εm(x)|] would also work, but
Ex[εm(x)2] is more mathematically convenient since x2 is differentiable at all points whereas |x| is
not. The other difference that can be useful is that εm(x)2 punishes large mistakes much more than
small mistakes, whereas |εm(x)2| punishes all mistakes equally.
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